Showing posts with label Measurement. Show all posts
Showing posts with label Measurement. Show all posts

Sensuron - Distributed Measurement Using Fiber Optic Sensing

Distributed Measurement Using Fiber Optic Sensing

Sensuron provides intrinsic fiber optic sensing technology, using the fiber optic cable as the sensor. There are three generations of intrinsic fiber optic sensors: point fiber bragg grating (FBG) based sensors, scattering based sensors, and spatially continuous FBG based sensors. Scattering techniques use fully distributed measurements, whereas FBG techniques can use a small number of sensing points or be fully distributed, depending on how the system interprets the signal from the sensing element. 

FBGs, manufactured into the fiber's core, act like tiny mirrors. Each grating reflects a portion of the signal to the system as light travels down the fiber. The system detects and interprets changes in the returning signal to provide accurate strain and temperature measurements. The majority of FBG-based systems have a few sensing points along each fiber. While this multiplexing capability improves legacy technology, it still does not provide the sensor density required for monitoring continuous distributions. Precision, dynamic testing, and high-speed data acquisition are advantages of point FBG sensors. 

Scattering techniques do not use FBGs at all instead of relying on flaws in the fiber optic cable to obtain readings. There are three types of scattering technologies used in sensing systems today, each with its own set of capabilities. In general, distributed data and long sensing lengths benefit scattering-based fiber optic sensing systems. They are, however, limited to static operation due to low data fidelity, prolonged data acquisition rates on the order of minutes, and susceptibility to vibration. 

Sensuron employs a method that combines the advantages of point FBG sensors and scattering-based systems. Sensuron uses FBGs as the sensing element in their fiber but inscribes them continuously along its length. This process, including the signal interpretation technique, enables their platforms to collect spatially continuous data while maintaining the precision, dynamic testing, and high acquisition rates provided by FBGs. Engineers benefit from accurate measurements of full strain fields, temperature gradients, and other parameters in both static and dynamic environments. Sensuron's platforms can also measure internal and applied loads, deflection, 3D shape, and liquid level using the distributed strain data provided by the fiber.

For more information about Sensuron in New England and Upstate New York contact AP Corp. Call (508) 351-6200 or visit https://a-pcorp.com.

An Introduction to Sentek Dynamics Vibration Testing Systems

Sentek Dynamics Vibration Testing Systems
Download the full paper here.
Whether you are shopping for your first shaker system, or just educating yourself on vibration and shaker technology in general, you'll find this white paper on Sentek Dynamics shakers helpful. Sentek Dynamics supplies vibration test equipment to reproduce real-world environmental conditions for global manufacturers and offers technology capable of reproducing a wide-variety of test requirements - vibration (sine, random, shock, SoR, RoR, RSTD and others), data recording and dynamic signal analysis.

Although this paper focusses on Sentek Dynamics products, it provides excellent details about shaker technology in general.


Andruss-Peskin Introduction Video

Here's a short introduction video for those of you who don't yet know AP Corp. Thanks for watching.