Showing posts with label Maine. Show all posts
Showing posts with label Maine. Show all posts

Now Representing Sensuron - Ultrafine Distributed and Continuous Strain & Temperature Sensing

Now Representing Sensuron

AP Corp is pleased to announce its selection as Sensuron's New England and Upstate New York Authorized Representative.

ABOUT SENSURON
Starting as an informal partnership with NASA and a formal licensing agreement in 2011, Sensuron began developing off-the-shelf fiber optic sensing systems and then designing cutting-edge fiber optic sensing platforms that allowed companies to consolidate their testing and measurement solutions. Sensuron is now a leading global provider of distributed strain and temperature sensing platforms for applications across industries and is now expanding to liquid-level and 2D deflection.

Sensuron's fiber optic sensing technology enables engineers to perform structural testing, design optimization, structural health monitoring, thermal mapping, and shape sensing with an efficient, robust, and simple-to-use tool.

AP Corp is proud to be representing Sensuron in all of New England and Upstate New York. For more information call (508) 351-6200 or visit this web page.

AP Corp.
One Tara Boulevard
Suite 200
Nashua, NH 03062
www.a-pcorp.com
508-351-6200 (office)

Combat the Hazards of Plastics Screw and Barrel Wear

Combat the Hazards of Plastics Screw and Barrel Wear

This post is abstracted from an excellent article from Plastics Technology Online
written by Jim Callari. Read the full text here.

Industrial-grade screw and barrel wear cuts throughput speeds, producing scrap before shutting down. For the first time, technology is making progress in unraveling the mystery of screw and barrel wear. 

There has been a lot of injection molding machine innovation in the past year. And now, Glycon Corp. has the technology to test wear within the plasticating device. Glycon is in the first phase of rolling this technology out in the industry. It will concentrate on extrusion and blow molding. 

With this capability, they have developed the technology to calculate the rate of wear and predict future wear. This data determines the most cost-effective time to replace these components.

Glycon has been working on measuring wear since 1986 gained their first patent as Great Lakes Feedscrews. The company expanded the invention to include measuring barrel wear and was awarded additional patents in 2006, 2007, 2008, and 2019. 

Wear and tear challenges are well documented over the years, and plastic processors know the symptoms. Many machine operators compensate by making changes to the screw speed or temperature settings. The problem is, both of these changes would ultimately result in lower efficiency and higher scrap rates. 

The new system called EMT (short for Electronic Measurement and Tracking), includes Glycon's flite-scan eddy-current sensors mounted in one or more positions within a SmartBarrel. These barrels also have SmartPorts, another innovative technology offered by Glycon. 

Measurements will be conducted routinely at the processor's plant by field technicians using a Flite-Scan sensor. Several eddy-current sensors were tried over the years. Multiple sensor manufacturers were collaborated with, but all ran into failure at high temperatures in the plasticating units. 

Micro-Epsilon, a leading manufacturer of sensors that measure displacement, distance, position, vibration, dimension and thickness, was the eventual choice because their sensors proved much more robust and provided reliable readings up to 600 F. 

The EMT system is not only to analyze the data to determine the optimum time to replace or repair worn screws or barrels to optimize productivity but also to relate the wear to:

  • Materials of screw/barrel construction.
  • Screw/barrel alignment. 
  • Polymers being processed.
  • Impact of abrasive fillers.
  • Performance related to wear, including production rates, cycle times, energy consumption, melting rates, head pressures and melt temperatures.

The Glycon EMT system's advantages are that it provides precise measurement of the wear on the OD of the feedscrew and the barrel's ID and its simplicity and cost-effectiveness. It allows maintenance personnel to plan to measure intervals and to schedule changeouts at convenient times based upon wear-rate data rather than 'running to failure' and having to run inefficiently or not at all.

For more information about the new Glycon technology in New England and Upstate New York, contact AP Corp. Call them at (508) 351-6200 or visit their website at https://a-pcorp.com.

AP Corp. Selected Druck New England Representative

AP Corp. is ow The Druck New England Representative

AP Corp. is delighted to announce that they are now the New England Sales and  Engineering Representative for Druck piezo-resistive pressure sensors and test/calibration instruments.

Druck, a Baker Hughes business, manufactures the high-reliability piezo-resistive pressure sensors and test and calibration instruments known for performing in the most challenging environments. Their products provide customers with the highest performance, stability, quality, accuracy, and quickest response in any environment.

Druck's product line includes pressure sensors,  OEM custom sensors, PACE Pressure Controllers, handheld process calibrators, pressure indicators, test tool instrumentation, and  4Sight2 Calibration Management Software.

The addition of Druck extends AP's offering of high quality, best-in-class, engineered sensor solutions. AP Corp's application expertise and long-standing customer relationships in New England are vital to providing Druck with accelerated sales growth in this territory.

For more information, contact:

AP Corp.
One Tara Boulevard
Suite 200
Nashua, NH 03062
www.a-pcorp.com
508-351-6200 (office)

Distance Measurement for Reflecting Surfaces with Universal Laser Sensor

Distance Measurement for Reflecting Surfaces

Plastics, mirrored glass, or metals have highly reflective surfaces and require special laser sensors to measure displacement and distance. Displacement and distance measurements on strongly reflecting surfaces challenge conventional, diffuse reflection laser sensors. 

Laser sensors such as the Micro-Epsilon optoNCDT 1750DR provide a real-time surface compensation feature that controls exposure time that produces stable signals. This type of laser sensor operates on the principle of direct reflection, aligned so that the angle of incidence is equal to the angle of reflection. Proprietary algorithms compensate for the back-scattered, high-intensity light—all of this in a compact design, including an integrated controller (no external control unit is required).

Mounting and wiring are easy. A mounting template enables the user to align the sensor correctly. The laser class 1 rating on which the optoNCDT 1750DR operates is another advantage. Additional safety precautions are not necessary since the emitted laser power does not exceed 390 µW. Users have the choice of an intuitive web interface which can operate the laser sensor from a browser.

For more information in New England, contact AP Corp.

508-351-6200

Do You Have a Production Part Heating Challenge? Get Free Assistance from The LAB

Part Heating Lab

Ambrell's Applications Laboratory, known in the industry as THE LAB, will solve your most challenging heating applications. They will provide recommendations for precision induction heating solutions for parts of every size, shape, and material composition. 

THE LAB will apply their state-of-art testing facility, fully equipped with Ambrell induction heating systems and hundreds of proven coils. You can also interface with their engineers and see first-hand how they design prototype coils and develop innovative, practical solutions to maximize your heating process's efficiency. 

The process is easy. Just follow these three steps:

  1. Send THE LAB your parts and process requirements.
  2. Their engineers will analyze your process and heat your parts to develop the right solution for your specific application.
  3. You will receive your parts back for inspection, as well as a video of the heating process and a laboratory report with a system recommendation.

You have the option to observe testing through Ambrell's Remote Lab Service from the convenience of your office.

If you have old systems that need upgrading, why not find out if using a smaller, more efficient Ambrell induction heating system is the right solution for your process? There are measurable savings in less downtime, higher production throughput, improved energy efficiency, and more.

To learn more in New England and Upstate New York, contact AP Corp. Call them at 508-351-6200 or visit their website at https://a-pcorp.com.

Process Weighing, Web Tension, and Force Control Systems Applications in Pulp and Paper Production

BLH AP Corp

BLH Nobel is a leading supplier of specialized pulp and paper measuring devices. Over the years, they've built a strong understanding of pulp and paper manufacturers' process problems. Be assured that BLH Nobel has the best solutions to maximize productivity and performance.

DOWNLOAD THE BLH PULP & PAPER APPLICATIONS GUIDE HERE

Pulp and Paper Applications

  • State-of-the-Art Instrument for Weighing and Force Measurement
  • Web Tension Measurement Unit
  • Dynamic Resultant Force Measurement
  • Refiners Position and Pressure Control
  • Paper Rolls, Pulpers and Coating Kitchen

Micro-Measurements Strain Gage Instrumentation Catalog

Strain Gage Instrumentation

Explore Micro-Measurements complete catalog of data acquisition instruments.

Micro-Measurements offers a comprehensive range of specialty instruments for data acquisition. With Micro-Measurements instruments, you can capture fully corrected, accurate engineering-unit data with minimal effort. Their special-purpose equipment, backed by highly skilled engineers' expertise and knowledge, complements strain gage installation integrity and instrument calibration.

DOWNLOAD THE CATALOG HERE

Product Range:

  • High-speed data loggers
  • Single-channel devices
  • Portable indicators
  • Multi-channel data acquisitions systems
  • High-bandwidth signal conditioners
  • Signal conditioning amplifiers
  • Embedded analog-to-digital convertors
  • Inputs for other commonly used sensors, including load cells, displacement transducers, thermocouples, and accelerometers. 
For more information about Micro-Measurements in New England and Upstate NY, contact AP Corp. Call them at (508) 351-6200 or visit their website at https://a-pcorp.com.

The QSO® Quick Shut-off Valve from Glycon Corporation

A better quick shut-off non-return valve for the Plastics Industry.

QSO Valve by Glycon
Injection molding applications require two important criteria from a non-return valve:

  1. Rapid material shut off for part weight consistency
  2. A smooth, high-flow profile to prevent material degradation. 

The Glycon QSO® valve is the only valve that provides you both. The result is higher quality parts, fewer rejects, improved yield, and a better return on every pound of material you run.

Compared to traditional ball and ring check valves, only the QSO® Quick Shut-off Valve delivers both high flow and raid shut-off. Plastics molders prefer the QSO® because:

  • The QSO® ends short shots!
  • The QSO® reduces scrap rates
  • The QSO® optimize part weight consistency
  • The QSO® prevents material degradation
  • The QSO®is perfect for filled materials
  • The QSO® eliminates need for decompression or “suck back”
  • The QSO® maintains smooth material flow path
  • The QSO®is designed for long lasting and durable
QSO Valve by Glycon


Which Melt Pressure Sensor Is Good for My Application?

Melt Pressure Sensor Selection

So how do I choose the right melt pressure sensor for my application? 

A sensor is defined through the following specifications:

  • Pressure Range
  • Process connection
  • Electrical output and connection
  • Capillary configuration (rigid/flexible)
Melt Pressure Sensor

There are more variables come into play, but let's focus on these four since they are the most critical.

Melt Pressure Sensor Pressure Range


The pressure inside a plastics processing machine can usually be estimated well enough to determine a sensor's good pressure range. The typical working pressure should be within 20%-80% of the sensor's pressure range to balance accuracy and lifetime.

Melt Pressure Sensor Process Connection


For threaded connections in plastics processing, a standard has developed over time, which is the ½"-20UNF thread with a conical sealing face. There might be situations where different thread sizes or a flange connection is required. There are numerous options available from manufacturers, such as Dynisco, to satisfy customer needs regarding the process connection.

Melt Pressure Sensor Electrical Output


Melt Pressure Sensor Electrical Output

A pressure sensor is an electro-mechanical device that converts a mechanical effect (pressure deflects a thin piece of metal) into an electrical signal through a strain gauge. The strain gauge changes its resistance by following the deflection of the metal piece. In the simplest case, the strain gauge signal can be used directly to feed a read-out device to display the pressure.  In order to accommodate industry-standard equipment, such as process control equipment, manufacturers like Dynisco supplies sensors with different amplified output options such as 4-20mA or 0-10V.

Melt Pressure Sensor Capillary Configuration

Melt Pressure Sensor Capillary

A typical pressure sensor has a liquid-filled capillary that connects the process-connection diaphragm (which is deflected by the process pressure) and the measuring diaphragm (where the strain gauge is bonded). This capillary is necessary to create a heat barrier, as the strain gauge cannot withstand the typical process temperatures at plastics processing. Also, the sensor's electronics need to be kept away from heat sources as well as possible. To find a suitable mounting location for the electronics, countless combinations of the rigid stem and flexible connection lengths are available.

Other Considerations in choosing a Melt Pressure Sensor:

  • Diaphragm materials
  • Diaphragm coatings
  • Approvals and certifications

For assistance in selecting or applying any plastics molding equipment, contact AP Corp. by calling (508) 351-6200 or visit their website at https://a-pcorp.com.

Web Tension Control in Paper Production

BLH Nobel web tension systems comprise off-the-shelf standard modules and electronics, as well as customized systems. BLH Nobel designs force measurement modules according to the customers’ mechanical requirements and forces, ranging in size from just a few Newtons to mega-Newtons. The combination of digital signal amplifiers and stable force transducers means that BLH Nobel systems can handle anything from applications with a low tare and large forces, to those with a large tare and small forces.

For more information about BLH Nobel products in New England, contact AP Corp. Call them at (508) 351-6200 or visit their website at https://a-pcorp.com.

EASYHEAT Induction Heaters from Ambrell Corporation

Easyheat Induction Heaters
EASYHEAT advanced induction heating systems by Ambrell Corporation provide a flameless, non-contact, reliable, compact solution for heating your parts with a quick, clean source of heat. Available in models from 500 Watt to 10 kW, all are ideal for repeatable, energy-focused heating of your parts.

Flameless, non-contact induction heating minimizes energy waste by focusing energy only on the part and zone to be heated. Select and monitor power levels from the front panel LCD and sealed touch pad. Remote power control is available for employing contact inputs, analog inputs or optional serial data port. Easily control the length of the heating cycle with a built-in programmable digital timer.

Download the Ambrell EASYHEAT® 500 Watt to 10 kW Induction Heater Catalog here.

For more information about Ambrell products in New England, contact AP Corp. Call them at 508-351-6200 or visit their website at https://a-pcorp.com.

New Bench Top Series of Shaker Systems from Sentek Dynamics

Bench Top Series of Shaker Systems

The BT Series shakers from Sentek Dynamics are designed for demanding vibration test applications. Typical applications included structural analysis, calibration and testing of smaller assemblies. The BT-100 through BT-400 shakers utilize light weight rare earth magnets in lieu of traditional Alnico magnets. The use of these magnets decreases the total shaker mass to a third of similar size system, making these shakers easy to handle and portable. 

The systems range in size from 100 N (70 lbf) to 1000 N (224 lbf). Systems 400 N (99 lbf) and smaller are permanent magnet shakers and use lightweight rare earth magnets, making these systems easy to handle and portable. There are three versions of the BT Series of shakers: the BT, BT-M and BT-MTH.  

The BT Series is recommended for vibration testing of small assemblies and components. These shakers have armature diameters from 60 mm (2.36 in.) to 120 mm (4.72 in.). The BT-1000 is equipped as standard with Automatic Armature Centering (AAC) and Air-Isolation Feet (AIF).  

The BT-M and BT-MTH Series are our modal shakers lines. BT-M will use standard stingers while the BT-MTH is our through-hole version. On the 100 N and 200 N system the BT-MTH offers over double the displacement. The BT-MTH Series allow you to use piano-wire stingers. The BT-1000-M is ideal for the structural and modal analysis of high-mass structures. The addition of ZPR (electronic zero-point regulation and adjustable suspension stiffness) allows the user to pre-load the structure prior to applying a dynamic load.

The new Sentek Dynamics Bench Top and modal exciters are based upon years of practical experience. These systems all exhibit a high lateral stiffness and high force-to-weight ratio. They are specifically designed to help ensure the best possible performance with minimum setup time. 

Contact AP Corp. regarding any Sentek Dynamics product in New England and Upstate New York. Call us at (508) 351-6200 or visit our website at https://a-pcorp.com.

Micro-Epsilon Laser Profile Scanners: scanCONTROL LLT3000 and 2500



Micro-Epsilon scanCONTROL LLT3000

The scanCONTROL LLT3000 laser profile scanners impress in 2D/3D measurement tasks with high precision and dynamics. With a high resolution sensor matrix and high profile frequency, the scanners are designed for precise profile measurements in dynamic processes.

Micro-Epsilon scanCONTROL 2500

The scanCONTROL 2500 laser scanners are specially designed for industrial measurement tasks. Compact design, versatility and high signal stability result in an excellent price/performance ratio especially for measurement tasks involving large quantities.

Laser profile scanners from Micro-Epsilon are among the highest performing profile sensors with respect to accuracy and measuring rate. Equipped with powerful processors and highly sensitive optical components, these scanners ensure precise profile measurements on nearly any type of surface. While they can be integrated in various environments, the scanners also impress with a compact design which includes an integrated controller.

For more information about Micro-Epsilon products in New England, contact AP Corp. Call them at (508) 351-6200 or visit their website at https://a-pcorp.com.

BLH Nobel KIS Beam Load Cell Technology


The BLH Nobel KIS load cell provides unmatched efficiency, is simple to mount, and is highly accurate, even under complex process forces and extreme environmental conditions. Unlike other load cells, KIS works as defined in real-world applications, not just under laboratory conditions. 

KIS Beam technology integrates SR-4 ® strain gages connected as a full Wheatstone bridge that is temperature-compensated and optimized for precision and reliability. And since all KIS Beams are factory-calibrated, installation and set-up are simple and easy without the need for on-site calibration (unless mechanical obstructions prohibit a vessel being "freestanding"). 

The above four-minute video does an excellent job illustrating how the KIS load cell works and what distinguishes KIS from other load cells

For more information about BLH Nobel products in New England, contact AP Corp. Call them at (508) 351-6200 or visit their website at https://a-pcorp.com.

About Induction Heating

What is induction heating?

About Induction HeatingInduction heating is a fast, efficient, precise, repeatable, non-contact method for heating metals or other electrically-conductive materials . An induction heating system includes an induction power supply which converts line power to an alternating current, delivers it to a workhead and work coil creating an electromagnetic field within the coil. The work piece is placed in the coil where this field induces a current in the work piece, which generates heat in the work piece. The coil, which is water-cooled and cool to the touch, is placed around or adjacent to the work piece. It does not touch the work piece, and the heat is only generated by the induced current flowing in the work piece.

Induction heating is used in processes where temperatures are as low as 100 oC (212 °F) and as high as 3000 °C (5432 °F). It can be used in brief heating processes that are on for less than half a second and in heating processes that are on for months.

Induction heating is used in domestic and commercial cooking, and in many applications such as melting, heat treating, preheating for welding, brazing, soldering, curing, sealing, shrink fitting in industry, and in research and development.

Learn more about induction heating by downloading the "About Induction Heating Solutions" technical note courtesy of Ambrell Induction Heating Systems.


AP Corp.
(508) 351-6200

What is a Binocular Strain Gauge Load Cell?


Load cells, the heart of weighing systems, are mechanical devices that use strain gages to provide a measurable electrical output which is proportional to the force applied. The electrical output can be either an analog voltage or current output, or a digital on/off output.

Used for tension, compression, and or shear measurement, load cells are packaged and oriented to perform in testing equipment, electronic scales, and monitoring systems. Tension load cells are used for measuring forces that are in-line and "pull apart". Compression load cells are used to measure forces that are in-line and "push together". Shear load cells are used to measure tension or compression forces that are offset (not in-line). When selecting load cells, there are many form factors or packages to choose from to insure their physical size is compatible with space available for the application, such as inside an electronic weighing scale.

The strain gage is a resistive sensor whose resistance changes based upon the applied strain. A strain gage is attached to some structure, and when that structure is deformed (tension, compression, shear), the resistive strands in the strain gage follow the structure deformation, causing an electrical resistance change. This change in resistance is converted to units of strain or stress. 

Strain gages are used in transducers that measure force, pressure, and tension, and are often used providing stress analysis in structures such as airplanes, cars, machines, and bridges. 

When specifying strain gages one must consider the application variables, such as operating temperature, the state of the strain (including gradient, direction, magnitude, and time dependence), and the stability required by the application.

For more information about strain gages and load cells, contact AP Corp. Call them at 508-351-6200 or visit their web site at https://a-pcorp.com.

Load Cells for Weighing Vessels in Hot and Vibration Prone Areas

Tank weighing
Most load cells are designed to handle vertical force and cannot discern errors introduced from side loading and/or torque loading. In real world conditions, though, load cells see much more than vertical loading, and unfortunately, can output erroneous values. While they are excellent for static weighing situations, such as scales, load cells typically can’t handle the rigors of process vessel applications.

A case in point is a chemical manufacturer with several, existing three cubic meter batching tanks. It was decided the tanks needed modifications to provide more accurate weighing of the individual ingredients. The existing load cells were experiencing errors due to thermal expansion of the vessel, and the resultant side loads from expansion. Additionally there was a problem with vibration in the plant. A better solution was needed, and whatever the solution would be, the customer made it clear the new weighing system must provide system accuracy in the range of ±0.1%.

Tank weighing

An approach to deal mechanically with the thermal cycling while using the same type of load cell was discussed. It involved several mechanical modifications that required significant and costly structural changes.

BLH KIS
BLH KIS
Another suggestion was to evaluate a unique load cell design that was particularly tolerant against thermal expansion, vibration, and high lateral forces - the BLH Nobel KIS series.  The KIS load cell offered some obvious advantages over rebuilding the tanks supports and frame, namely time and expense. Beyond the short installation time and easy modification, the KIS also offers excellent reliability and accuracy.

BLH Controller
BLH Controller
The customer decided to “take the easy way out” and just replace the old, error-prone load cells with KIS load cells. Installation and start-up was very easy, taking very little time. After installation, the customer was pleasantly surprised by the high accuracy of the new KIS load cells, despite the thermal expansion of the vessel and the inherent vibration.

For more information on BLH Nobel products in New England and Upstate New York contact A-P Corp. Call them at (816) 353-6550 or visit them at https://a-pcorp.com.

Plastics Industry Feed Screw Classification White Paper

The feed screw is used in plastics extrusion to force melting plastic resin through a die into a mold to form a desired shape. As screw designs have evolved through the years, there are several generic categories.

Glycon Corporation, the industry leader manufacturer of high performance and innovative feed screws, has put together this white paper describing the classifications of feed screws used in the plastics industry.








AP Corp.
https://a-pcorp.com
(508) 351-6200

The Badger Meter Cox EC80 Flow Processor

Cox EC80 Flow ProcessorThe Cox EC80 Flow Processor is a programmable electronic processor, providing total compensation to enhance flow meter accuracy, while extending the linear flow range. Packaging is provided for remote, direct or embedded mounting to support most installation or application requirements.

The compact design includes both single and dual frequency inputs from 4 or 10 ohm pickups, as well an RTD input and an additional analog input for other temperature inputs. The EC80 processor tracks all variables to compensate for viscous and inertial effects, using proven Strouhal-Roshko algorithms. Enhanced DSP technology allows for exceptional signal characterization using a 32-bit floating point processor at 150 MHz, capable of producing a 100 microsecond speed of response.

Cox EC80 Flow Processor Applications

  • Precision monitoring
  • Engine test cells and test stands
  • On-board automotive and aerospace testing
  • Control loops
  • Custom OEM flight and commercial applications

Cox EC80 Flow Processor Industries

  • Aviation & Aerospace
  • Petrochemical, Refining & Chemical Metering
  • Process or Industrial
  • Test Equipment & Services



For more information, contact AP Corp. Call them at 508-351-6200 or visit their web site at https://a-pcorp.com.

Bonding Strain Gages? 5 Steps to Getting Surface Prep Right!


When bonding Micro-Measurements Advanced Sensors Technology strain gage sensors (CEA, C4A, C5K)  you want to ensure an excellent bond. The key element in bonding strain gages is surface preparation.

The video above demonstrates specific procedures and techniques with proven advantages. By precisely following these carefully developed instructions (along with the requisite procedures for gage and adhesive handling), the result will be strong and stable bonds. This video presents a procedure that is simple to learn, easy to perform, and reproducible. Keep in mind, it is very important to pay attention to detail and follow the instructions precisely. The importance of surface preparation for strain gage bonding cannot be understated.

1) Degreasing

Rigorously  degrease the gaging area with a good solvent, such as CSM Degreaser or GC-6 Isopropyl Alcohol. Be aware though that some materials (e.g., titanium and many plastics) react with strong solvents. Make sure your solvents do not contain any contaminants

2) Abrading

Preliminary dry abrading with 220 or 320-grit silicon-carbide paper is generally required if there is any surface scale or oxide. Final abrading is done by using 320-grit silicon-carbide paper on surfaces thoroughly wetted with M-Prep Conditioner A; this is followed by wiping dry with a gauze sponge. Repeat this wet abrading process with 400-grit silicon-carbide paper, then dry by slowly wiping through with a gauze sponge.  Finish with 320 grit on most steels and 400 grit on aluminum alloys.

3) Burnishing of Layout Lines

Using a 4H pencil (on aluminum) or a ballpoint pen (on steel), burnish (do not scribe) whatever alignment marks are needed on the specimen.


4) Conditioning

Repeatedly apply M-Prep Conditioner A and scrub with cotton-tipped applicators until a clean tip is no longer discolored. Remove all residue and Conditioner by again slowly wiping through with a gauze sponge. Never allow any solution to dry on the surface because this invariably leaves a contaminating film and reduces chances of a good bond.

5) Neutralizing

Now apply a liberal amount of M-Prep Neutralizer 5A and scrub with a cotton-tipped applicator. With a single, slow wiping motion of a gauze sponge starting within the clean area and wiping outward in one direction.  Repeat the wiping step with a clean gauze pad, again, start in the clean area, wipe though the gage location moving outward in a single stroke to fully dry this surface. Do not wipe back and forth because this may allow contaminants to be redeposited.

For proper outcomes, the procedures and techniques presented here should be used with qualified installation accessory products from Micro-Measurements, namely:
  • CSM Degreaser or GC-6 Isopropyl Alcohol
  • Silicon Carbide Paper
  • M-Prep Conditioner A
  • M-Prep Neutralizer 5A
  • GSP-1 Gauze Sponges
  • CSP-1 Cotton Applicators
  • PCT Gage Installation Tape
For more infomration, contact AP Corp. Call them at 508-351-6200 or visit their web site at https://a-pcorp.com.