Showing posts with label feed screw. Show all posts
Showing posts with label feed screw. Show all posts

Why Plastics Industry Feed Screws are Designed the Way They Are

Feed screw selection
Download the white paper here.

The selection of the proper screw for a given injection molding or extrusion application can be critical to its success.

Screw geometry — length-to-diameter ratio, profile, channel depth, compression ratio, helix angle and a host of special design features — has everything to do with how well the screw performs in a given application.

There are documented applications where customers have improved production rates or reduced cycle times by 30 or 40% simply by switching to an improved screw design. Similarly, reject rates have been lowered from more than 4-6% to less than 1% by incorporating a custom designed mixing screw.

And experience shows that the amount of color concentrate required to achieve optimum color mix can be typically reduced from 4% (of the total blend) to 2%, just by using an optimized screw design. When considering resin and concentrate costs, payback for an optimized screw and non-return valve design can be almost immediate.

This white paper, published by Glycon Corporation, provides an in-depth look into plastics industry feed screw design.

What are Plastics Industry Feed Screws and How Are They Made?


Feed screw maintenance
Feed screw maintenance.
Plastics industry feed screws, or feed screw augers, are mechanisms that use rotating helical screw blades to move plastics pellets through the barrel of molding and extrusion equipment. The feed screw transports the plastic as it changes phase from solid to viscous liquid through friction, shear, and conductive heat transfer. 

A typical feed screw has three zones. Plastic pellets enters the screw feed section where the pellets are compacted and conveyed. Next is the transition (or compression) section, where the plastic is compressed, conveyed, and melted.  Finally, the liquid plastic moves to the metering section where it is precisely controlled at optimum temperature and viscosity.

For more information about feed screws, or any part of the injection molding process, contact:
508-351-6200

Injection molding
Diagram of injection molding process.