A blog discussing sensors and instrumentation. New products, new technologies, and interesting applications. Types of sensors and instruments discussed include: Analyzers, Color Sensors, Displacement Sensors, Flow Sensors, Industrial Weighing, Instrumentation (Data Acquisition), Load Cells & Instrument Hardware. Machine Controls, Pressure Gauges, Pressure Sensors, Sanitary Sensors, Strain Gages, and Temperature Sensors. Courtesy of AP Corp.
AP Corp. is delighted to announce that they are now the New England Sales and Engineering Representative for Druck piezo-resistive pressure sensors and test/calibration instruments.
Druck, a Baker Hughes business, manufactures the high-reliability piezo-resistive pressure sensors and test and calibration instruments known for performing in the most challenging environments. Their products provide customers with the highest performance, stability, quality, accuracy, and quickest response in any environment.
Druck's product line includes pressure sensors, OEM custom sensors, PACE Pressure Controllers, handheld process calibrators, pressure indicators, test tool instrumentation, and 4Sight2 Calibration Management Software.
The addition of Druck extends AP's offering of high quality, best-in-class, engineered sensor solutions. AP Corp's application expertise and long-standing customer relationships in New England are vital to providing Druck with accelerated sales growth in this territory.
For more information, contact:
AP Corp. One Tara Boulevard Suite 200 Nashua, NH 03062 www.a-pcorp.com 508-351-6200 (office)
BLH Nobel is a leading supplier of specialized pulp and paper measuring devices. Over the years, they've built a strong understanding of pulp and paper manufacturers' process problems. Be assured that BLH Nobel has the best solutions to maximize productivity and performance.
Explore Micro-Measurements complete catalog of data acquisition instruments.
Micro-Measurements offers a comprehensive range of specialty instruments for data acquisition. With Micro-Measurements instruments, you can capture fully corrected, accurate engineering-unit data with minimal effort. Their special-purpose equipment, backed by highly skilled engineers' expertise and knowledge, complements strain gage installation integrity and instrument calibration.
A better quick shut-off non-return valve for the Plastics Industry.
Injection molding applications require two important criteria from a non-return valve:
Rapid material shut off for part weight consistency
A smooth, high-flow profile to prevent material degradation.
The Glycon QSO® valve is the only valve that provides you both. The result is higher quality parts, fewer rejects, improved yield, and a better return on every pound of material you run.
Compared to traditional ball and ring check valves, only the QSO® Quick Shut-off Valve delivers both high flow and raid shut-off. Plastics molders prefer the QSO® because:
The QSO® ends short shots!
The QSO® reduces scrap rates
The QSO® optimize part weight consistency
The QSO® prevents material degradation
The QSO®is perfect for filled materials
The QSO® eliminates need for decompression or “suck back”
BLH Nobel web tension systems comprise off-the-shelf standard modules and electronics, as well as customized systems. BLH Nobel designs force measurement modules according to the customers’ mechanical requirements and forces, ranging in size from just a few Newtons to mega-Newtons. The combination of digital signal amplifiers and stable force transducers means that BLH Nobel systems can handle anything from applications with a low tare and large forces, to those with a large tare and small forces.
EASYHEAT advanced induction heating systems by Ambrell Corporation provide a flameless, non-contact, reliable, compact solution for heating your parts with a quick, clean source of heat. Available in models from 500 Watt to 10 kW, all are ideal for repeatable, energy-focused heating of your parts.
Flameless, non-contact induction heating minimizes energy waste by focusing energy only on the part and zone to be heated. Select and monitor power levels from the front panel LCD and sealed touch pad. Remote power control is available for employing contact inputs, analog inputs or optional serial data port. Easily control the length of the heating cycle with a built-in programmable digital timer.
The BT Series shakers from Sentek Dynamics are designed for demanding vibration test applications. Typical applications included structural analysis, calibration and testing of smaller assemblies. The BT-100 through BT-400 shakers utilize light weight rare earth magnets in lieu of traditional Alnico magnets. The use of these magnets decreases the total shaker mass to a third of similar size system, making these shakers easy to handle and portable.
The systems range in size from 100 N (70 lbf) to 1000 N (224 lbf). Systems 400 N (99 lbf) and smaller are permanent magnet shakers and use lightweight rare earth magnets, making these systems easy to handle and portable. There are three versions of the BT Series of shakers: the BT, BT-M and BT-MTH.
The BT Series is recommended for vibration testing of small assemblies and components. These shakers have armature diameters from 60 mm (2.36 in.) to 120 mm (4.72 in.). The BT-1000 is equipped as standard with Automatic Armature Centering (AAC) and Air-Isolation Feet (AIF).
The BT-M and BT-MTH Series are our modal shakers lines. BT-M will use standard stingers while the BT-MTH is our through-hole version. On the 100 N and 200 N system the BT-MTH offers over double the displacement. The BT-MTH Series allow you to use piano-wire stingers. The BT-1000-M is ideal for the structural and modal analysis of high-mass structures. The addition of ZPR (electronic zero-point regulation and adjustable suspension stiffness) allows the user to pre-load the structure prior to applying a dynamic load.
The new Sentek Dynamics Bench Top and modal exciters are based upon years of practical experience. These systems all exhibit a high lateral stiffness and high force-to-weight ratio. They are specifically designed to help ensure the best possible performance with minimum setup time.
Induction heating is a fast, efficient, precise, repeatable, non-contact method for heating metals or other electrically-conductive materials . An induction heating system includes an induction power supply which converts line power to an alternating current, delivers it to a workhead and work coil creating an electromagnetic field within the coil. The work piece is placed in the coil where this field induces a current in the work piece, which generates heat in the work piece. The coil, which is water-cooled and cool to the touch, is placed around or adjacent to the work piece. It does not touch the work piece, and the heat is only generated by the induced current flowing in the work piece.
Induction heating is used in processes where temperatures are as low as 100 oC (212 °F) and as high as 3000 °C (5432 °F). It can be used in brief heating processes that are on for less than half a second and in heating processes that are on for months.
Induction heating is used in domestic and commercial cooking, and in many applications such as melting, heat treating, preheating for welding, brazing, soldering, curing, sealing, shrink fitting in industry, and in research and development.
Monitoring turbidity and haze of liquids and sheet is an indicator for product quality. Examples include: polymer extrusion, resins and chemical production. Real-time adjustments of the process parameters are therefore possible through immediate "off-specification" detection.
INTRODUCTION
Turbidity and haze measurement is a well-accepted technology to check the consistency some production processes. Usually these measurements are performed ‘off-line’.
The delay between sampling and obtaining the results from the laboratory can be time consuming. A significant disadvantage is that only a single measurement is generated in this time period and the concentration during, before and after the sampling point is unknown.
With the inline turbidity and haze measurements taking place directly in the process, not only is complete documentation possible, but when variations occur, immediate intervention can take place.
INNOVATION
The Equispec™ In-line Color Spectrophotometer (ICS) is a high performance instrument designed for use in an industrial pro-cess. Its excellent sensitivity and flexibility make it useful for process applications. The ICS and process probes are designed to be used in high-temperature, high-pressure and corrosive environments. It can be used to analyze liquids and solids.
The analyzer supports one or two probes with dedicated lamp compensation channels [all fiber-optic double-beam design].
Photo 3: Trend charts of EquiColor Software
TURBIDITY AND HAZE MEASUREMENT
Equitech’s fiber-optic probes allow for easy access into the process. Equitech offers probes for both turbidity and haze measurements. This includes insertion/immersion probes (see Photo 1).
The spectrophotometer is integrated in a NEMA4 box with an industrial computer and touch-screen (see photo 4). The appropriate spectral range is 380-780 nm (resolution 1 nm). The NEMA4 box is made from stainless steel. It is designed and equipped specifically for use in the production environment where the ambient conditions can be dusty, vary in temperature, subject to vibration etc. The box also contains a thermoelectric cooling and heating device to eliminate the influences from ambient temperature by keeping the temperature inside the box at a constant level.
Photo 2: ICS stainless steel NEMA4 box with touch-screen
The feed screw is used in plastics extrusion to force melting plastic resin through a die into a mold to form a desired shape. As screw designs have evolved through the years, there are several generic categories.
Glycon Corporation, the industry leader manufacturer of high performance and innovative feed screws, has put together this white paper describing the classifications of feed screws used in the plastics industry.
The Cox EC80 Flow Processor is a programmable electronic processor, providing total compensation to enhance flow meter accuracy, while extending the linear flow range. Packaging is provided for remote, direct or embedded mounting to support most installation or application requirements.
The compact design includes both single and dual frequency inputs from 4 or 10 ohm pickups, as well an RTD input and an additional analog input for other temperature inputs. The EC80 processor tracks all variables to compensate for viscous and inertial effects, using proven Strouhal-Roshko algorithms. Enhanced DSP technology allows for exceptional signal characterization using a 32-bit floating point processor at 150 MHz, capable of producing a 100 microsecond speed of response.
When bonding Micro-MeasurementsAdvanced Sensors Technology strain gage sensors (CEA, C4A, C5K) you want to ensure an excellent bond. The key element in bonding strain gages is surface preparation.
The video above demonstrates specific procedures and techniques with proven advantages. By precisely following these carefully developed instructions (along with the requisite procedures for gage and adhesive handling), the result will be strong and stable bonds. This video presents a procedure that is simple to learn, easy to perform, and reproducible. Keep in mind, it is very important to pay attention to detail and follow the instructions precisely. The importance of surface preparation for strain gage bonding cannot be understated.
1) Degreasing
Rigorously degrease the gaging area with a good solvent, such as CSM Degreaser or GC-6 Isopropyl Alcohol. Be aware though that some materials (e.g., titanium and many plastics) react with strong solvents. Make sure your solvents do not contain any contaminants
2) Abrading
Preliminary dry abrading with 220 or 320-grit silicon-carbide paper is generally required if there is any surface scale or oxide. Final abrading is done by using 320-grit silicon-carbide paper on surfaces thoroughly wetted with M-Prep Conditioner A; this is followed by wiping dry with a gauze sponge. Repeat this wet abrading process with 400-grit silicon-carbide paper, then dry by slowly wiping through with a gauze sponge. Finish with 320 grit on most steels and 400 grit on aluminum alloys.
3) Burnishing of Layout Lines
Using a 4H pencil (on aluminum) or a ballpoint pen (on steel), burnish (do not scribe) whatever alignment marks are needed on the specimen.
4) Conditioning
Repeatedly apply M-Prep Conditioner A and scrub with cotton-tipped applicators until a clean tip is no longer discolored. Remove all residue and Conditioner by again slowly wiping through with a gauze sponge. Never allow any solution to dry on the surface because this invariably leaves a contaminating film and reduces chances of a good bond.
5) Neutralizing
Now apply a liberal amount of M-Prep Neutralizer 5A and scrub with a cotton-tipped applicator. With a single, slow wiping motion of a gauze sponge starting within the clean area and wiping outward in one direction. Repeat the wiping step with a clean gauze pad, again, start in the clean area, wipe though the gage location moving outward in a single stroke to fully dry this surface. Do not wipe back and forth because this may allow contaminants to be redeposited.
For proper outcomes, the procedures and techniques presented here should be used with qualified installation accessory products from Micro-Measurements, namely:
CSM Degreaser or GC-6 Isopropyl Alcohol
Silicon Carbide Paper
M-Prep Conditioner A
M-Prep Neutralizer 5A
GSP-1 Gauze Sponges
CSP-1 Cotton Applicators
PCT Gage Installation Tape
For more infomration, contact AP Corp. Call them at 508-351-6200 or visit their web site at https://a-pcorp.com.
The SV 200A is a Class 1 sound level meter integrated with a wireless communication via 3G, LAN, Wireless LAN and Bluetooth®. The list of add-ons also includes a built-in electrostatic actuator, GPS module and e-compass. The waterproof power supply is also provided.
The SVANTEK SV 200A is the top-of-the range noise monitoring station with built-in microphones for noise directivity detection. This innovative, new product enables the identification of dominant noise sources providing information about their location both vertically and horizontally. In practice, measuring directionality gives the opportunity to indicate the dominant source of noise in the measurement area or exclude unwanted events.
Four additional microphones located on the sides of the housing use the sound intensity technique to recognize both the vertical and the horizontal direction of a dominant noise source. Leq distribution in angle sectors is saved as time-history and can be used to filter and report data.
The SVANTEK SV 200A can perform a 1/1 and 1/3 octave frequency analysis in real-time and store it as time-history data. It can also record the audio signal for the recognition of noise sources and recalculation of the data.
The advanced alarm function can send email and SMS notifications caused by threshold levels and time events. Status alarms of the SVANTEK SV 200A are also available.
The 3G modem, Wi-Fi and LAN features provide fast Internet transfer to PC with standard internet connectivity. SvanNET enables Internet plug & play and easy management of measurement projects. Irrespective of the type of a public or private sim card, SvanNET will make a connection to allow full access to your data via Web browser. The Bluetooth ® and Wireless LAN features provide a point of access for easy SvanNET application configuration.
The SVAN 977A is a class-one sound and vibration level meter that offers unprecedented state-of-the-art technology designed for general acoustic, occupational health, and building acoustic measurements of vibration and environmental noise. The instrument comes equipped as standard with the SV7052E polarized half inch microphone, the SV12 microphone preamplifier, and the SA22 foam windscreen, as well as a large 16 gigabyte internal memory which can be easily upgraded by a micro SD card. The meter comes equipped with a standard quarter inch photographic thread. On the bottom panel you can locate the usb serial and I/O sockets. There is also a micro SD card slot under the bottom cover and spaces for the four double a batteries. The SVAN 977A is equipped with a super contrast led color display. The instrument's user interface makes both configuration and measurement easier than ever before. The user can easily operate the instrument by selecting the appropriate position from the selected menu lists.
The instrument has 2 general modes of operation: Configuration mode; and measurement performance and results preview mode. The SVAN 977A can be used in the meter mode to perform the real-time 11 octave or 1/3 octave analysis including calculations of statistical levels, and can also perform FFT analysis. For building acoustic applications SVAN 977A offers reverberation time measurements RT60 and building acoustics assistant application for smartphones.
With a special microphone the meter provides measurement range of the ultrasounds up to 40 kilohertz. Measurement results can be viewed indifferent view modes, the set of which you can change and activate depending on the selected measurement function. If you disconnect the microphone preamplifier, you can use the instrument to take vibration measurements simply by connecting a cable and a vibration sensor. SVAN 977A can be easily installed into the SM277 case and used as an outdoor monitoring station thanks to a dedicated modem station which enables connection to the SVAN NET, an advanced server solution supporting remote connection giving users full access to the measurement data via web browser or dedicated application.
For more information, contact AP Corp. by visiting https://a-pcorp.com or by calling (508) 351-6200.
The SVAN 971 is a Class 1 sound level meter and real-time analyzer. It is an ideal choice for industrial hygiene noise measurements, short period environmental noise measurements, acoustics consultancy surveys, technical engineers dealing with noise issues, and general acoustics noise measurements.
The SVAN 971 is an extremely small instrument with options for 1/1 & 1/3 octave analysis. The instrument brings unprecedented state of the art technology to a SLM of this size.The user interface makes both configuration and measurement easier than ever before. For those who don't have time to work with measurement settings, SVAN 971 offers extremely simple operational mode with Start/Stop. Another exceptional feature is built-in self-vibration monitoring providing information about level of vibration that influences the measurement results.