Happy Labor Day from AP Corp!

Happy Labor Day

 Honoring all the hard working people that make the US economy run each and every day. 

Thank you.

Melt Processing of Thermoplastics for Extrusion and Injection Molding

Melt Processing
Extrusion and injection molding are the most important conversion techniques used by the thermoplastics processing industry. Certain factors need to be considered before a thermoplastics material is processed, regardless of whether it is injection molding or extrusion molding that is used. Dynisco, a global leader in the measurement of measurement of polymer rheology, pressure, and temperature, provides and excellent technical bulletin on the critical factors you need to understand.

Melt Processing of Thermoplastics for Extrusion and Injection Molding Table of Contents:

  • Introduction
  • Hygroscopic Behavior
  • Granule Characteristics
  • Thermal Properties and Heat Input Thermal Stability
  • Flow Properties
  • Thermal Properties and Cooling Crystallization and Shrinkage Molecular Orientation


For more information about Dynisco products in Upstate New York or New England, or about any plastics molding or extruding application, contact AP Corp. Call them at (508) 351-6200 or visit their website at https://a-pcorp.com.

New Bench Top Series of Shaker Systems from Sentek Dynamics

Bench Top Series of Shaker Systems

The BT Series shakers from Sentek Dynamics are designed for demanding vibration test applications. Typical applications included structural analysis, calibration and testing of smaller assemblies. The BT-100 through BT-400 shakers utilize light weight rare earth magnets in lieu of traditional Alnico magnets. The use of these magnets decreases the total shaker mass to a third of similar size system, making these shakers easy to handle and portable. 

The systems range in size from 100 N (70 lbf) to 1000 N (224 lbf). Systems 400 N (99 lbf) and smaller are permanent magnet shakers and use lightweight rare earth magnets, making these systems easy to handle and portable. There are three versions of the BT Series of shakers: the BT, BT-M and BT-MTH.  

The BT Series is recommended for vibration testing of small assemblies and components. These shakers have armature diameters from 60 mm (2.36 in.) to 120 mm (4.72 in.). The BT-1000 is equipped as standard with Automatic Armature Centering (AAC) and Air-Isolation Feet (AIF).  

The BT-M and BT-MTH Series are our modal shakers lines. BT-M will use standard stingers while the BT-MTH is our through-hole version. On the 100 N and 200 N system the BT-MTH offers over double the displacement. The BT-MTH Series allow you to use piano-wire stingers. The BT-1000-M is ideal for the structural and modal analysis of high-mass structures. The addition of ZPR (electronic zero-point regulation and adjustable suspension stiffness) allows the user to pre-load the structure prior to applying a dynamic load.

The new Sentek Dynamics Bench Top and modal exciters are based upon years of practical experience. These systems all exhibit a high lateral stiffness and high force-to-weight ratio. They are specifically designed to help ensure the best possible performance with minimum setup time. 

Contact AP Corp. regarding any Sentek Dynamics product in New England and Upstate New York. Call us at (508) 351-6200 or visit our website at https://a-pcorp.com.

Micro-Epsilon Laser Profile Scanners: scanCONTROL LLT3000 and 2500



Micro-Epsilon scanCONTROL LLT3000

The scanCONTROL LLT3000 laser profile scanners impress in 2D/3D measurement tasks with high precision and dynamics. With a high resolution sensor matrix and high profile frequency, the scanners are designed for precise profile measurements in dynamic processes.

Micro-Epsilon scanCONTROL 2500

The scanCONTROL 2500 laser scanners are specially designed for industrial measurement tasks. Compact design, versatility and high signal stability result in an excellent price/performance ratio especially for measurement tasks involving large quantities.

Laser profile scanners from Micro-Epsilon are among the highest performing profile sensors with respect to accuracy and measuring rate. Equipped with powerful processors and highly sensitive optical components, these scanners ensure precise profile measurements on nearly any type of surface. While they can be integrated in various environments, the scanners also impress with a compact design which includes an integrated controller.

For more information about Micro-Epsilon products in New England, contact AP Corp. Call them at (508) 351-6200 or visit their website at https://a-pcorp.com.

BLH Nobel KIS Beam Load Cell Technology


The BLH Nobel KIS load cell provides unmatched efficiency, is simple to mount, and is highly accurate, even under complex process forces and extreme environmental conditions. Unlike other load cells, KIS works as defined in real-world applications, not just under laboratory conditions. 

KIS Beam technology integrates SR-4 ® strain gages connected as a full Wheatstone bridge that is temperature-compensated and optimized for precision and reliability. And since all KIS Beams are factory-calibrated, installation and set-up are simple and easy without the need for on-site calibration (unless mechanical obstructions prohibit a vessel being "freestanding"). 

The above four-minute video does an excellent job illustrating how the KIS load cell works and what distinguishes KIS from other load cells

For more information about BLH Nobel products in New England, contact AP Corp. Call them at (508) 351-6200 or visit their website at https://a-pcorp.com.

About Induction Heating

What is induction heating?

About Induction HeatingInduction heating is a fast, efficient, precise, repeatable, non-contact method for heating metals or other electrically-conductive materials . An induction heating system includes an induction power supply which converts line power to an alternating current, delivers it to a workhead and work coil creating an electromagnetic field within the coil. The work piece is placed in the coil where this field induces a current in the work piece, which generates heat in the work piece. The coil, which is water-cooled and cool to the touch, is placed around or adjacent to the work piece. It does not touch the work piece, and the heat is only generated by the induced current flowing in the work piece.

Induction heating is used in processes where temperatures are as low as 100 oC (212 °F) and as high as 3000 °C (5432 °F). It can be used in brief heating processes that are on for less than half a second and in heating processes that are on for months.

Induction heating is used in domestic and commercial cooking, and in many applications such as melting, heat treating, preheating for welding, brazing, soldering, curing, sealing, shrink fitting in industry, and in research and development.

Learn more about induction heating by downloading the "About Induction Heating Solutions" technical note courtesy of Ambrell Induction Heating Systems.


AP Corp.
(508) 351-6200