Free Expert Webinar on Induction Brazing and Soldering June 29, 2022 11 AM Eastern

Free Expert Webinar on Induction Brazing and Soldering June 29, 2022 11 AM Eastern

Ambrell Induction Heating Solutions, a world leader in induction heating technology,  has an important upcoming PRO Skills webinar:
  • Induction Brazing and Soldering
  • Wednesday, June 29th at 11:00 AM Eastern Time

PRESENTER: Dr. Girish Dahake, Sr. Vice President of Global Applications

Dr. Dahakeone is one of the world’s foremost induction scientists. His webinars draw hundreds of attendees per event and they come from countries across the globe.

Each webinar is designed to provide helpful, relevant content about induction heating.  The webinars are approximately 1 hour in length and are followed by an interactive Q&A session with Dr. Dahake, which typically lasts about 30 minutes.

REGISTER NOW FOR THIS FREE WEBINAR!

Commissioning a Dynisco Pressure Sensor Using the Dynisco 1490 Panel Indicator


Polymer manufacturing equipment such as extruders and injection molding machines are outfitted with various sensors, which allow the operators to monitor process variables, maintain safety, and avoid downtime and product output.

Dynisco manufactures precise pressure measurement and control devices that allow operators to monitor process variables, maintain safety, and avoid downtime during product output. This video will demonstrate each step of the pressure sensor commissioning process, including unpacking and wiring the sensor and setting parameter requirements for system operation.

For over 60 years, Dynisco has provided precision pressure measurement and control devices for all manner of plastic manufacturing equipment, which end-users rely on.

This video will teach you how to commission a pressure sensor with a Dynisco model 1490 indication device. The technician will offer guidance through each step of the pressure sensor commissioning process, from taking the sensor out of the box to wiring the sensor with the instrument and finally setting the parameter requirements for system operation.

This Video Covers:
  • Introduction
  • Unpacking and Examining the Pressure Sensor
  • Selecting the Cable Assembly
  • Unpacking and Wiring the Instrument
  • Connecting the Sensor Cable Assembly to the Instrument
  • Connecting the Cable Assembly to the Pressure Sensor
  • Supplying Power and Setting Parameters on the Instrument
  • Calibration of the Pressure Sensor with Instrumentation 

For more information about Dynisco products in New England and Upstate New York contact:
AP Corp.
(508) 351-6200

Understanding Load Cell Overload

Load Cell Overload

When you're talking about load cells in process weighing, what does safe and ultimate overload mean, and how strong are load cells?


The ultimate strength relates to the function as a load cell and not the mechanical strength. The mechanical strength of the load cell is even higher. 


For a load cell, there is generally three capacity limits:  


The nominal capacity of one 100%: Let's say we have a 100-pound load cell. This is the limit or capacity of the load cell. Note the load cell should not be subjected to higher forces under regular use. If the application needs to measure higher loads, then a larger load cell should be used.


The safe load usually is 200 percent of the rated capacity: Let's say with the 100-pound load cell this would be 200 pounds. If the load cell is occasionally subjected to more than 100 percent but less than 200 percent, nothing happens to it, and it will work. If repeatedly subjected to more than 100%, the load cell can be damaged due to fatigue.


The ultimate load is usually 300 percent of rated capacity or 300 pounds for a 100-pound load cell. If the load cell is occasionally subjected to a load greater than 200 percent but less than 300 percent, the load cell will be subjected to a zero shift. However, in most cases, the load cell can be recalibrated and repaired. If subjected to more than 300 percent, the bonding of the strain gauges will most likely be damaged beyond repair. The function of the load cell is damaged, and it should be scrapped. 


As a reminder, this refers to the function as a load cell and not the mechanical part. The mechanical strength of a load cell varies but is often in the range of 400 to 1 000 percent. It should also be noted that there's a fatigue limit for a load cell that generally is 133 of capacity. 



Choose Druck for Supply Chain Confidence

Choose Druck for Supply Chain Confidence

Since the pandemic, supply chain disruptions have posed a significant threat to the global economy. Factory closures and lockdowns in China and several other nations, labor shortages, strong demand for commodities, logistics network disruptions, and capacity limits have resulted in significant delivery times. Manufacturers have had to make tough choices, even relinquishing agency approvals on whole product lines.

Druck maintains regular lead times on pressure instruments and has shortened lead times from 4 weeks down to 3 to meet manufacturers' demands, particularly those facing supply chain disruptions. 

According to a poll done by the National Association of Manufacturers, 36% of companies suffer supply chain disruptions, with items arriving late or not at all. Druck works closely with its supply chain to maintain a 3-4 week delivery on the UNIK 5000 series. 

As firms look for alternative suppliers, Druck demonstrates their dependability as a domestic pressure instrument supplier, serving critical industries.

For more information about Druck products in New England, contact AP Corp.
(508) 351-6200

The Druck PACE CM3 Pressure Controller


AP Corp presents the Druck PACE CM3, a new custom-built system where the fastest pressure controller, PACE, and Druck's most accurate reference control module, CM3, are combined into one powerful, high-precision pressure measurement and control solution. PACE CM3 is part of a new generation of high precision pressure controllers from Druck. Using TERPS technology at the core, delivers an unprecedented level of performance and accuracy.

For more information about Druck products in New England, contact AP Corp.
(508) 351-6200

Sensuron - Distributed Measurement Using Fiber Optic Sensing

Distributed Measurement Using Fiber Optic Sensing

Sensuron provides intrinsic fiber optic sensing technology, using the fiber optic cable as the sensor. There are three generations of intrinsic fiber optic sensors: point fiber bragg grating (FBG) based sensors, scattering based sensors, and spatially continuous FBG based sensors. Scattering techniques use fully distributed measurements, whereas FBG techniques can use a small number of sensing points or be fully distributed, depending on how the system interprets the signal from the sensing element. 

FBGs, manufactured into the fiber's core, act like tiny mirrors. Each grating reflects a portion of the signal to the system as light travels down the fiber. The system detects and interprets changes in the returning signal to provide accurate strain and temperature measurements. The majority of FBG-based systems have a few sensing points along each fiber. While this multiplexing capability improves legacy technology, it still does not provide the sensor density required for monitoring continuous distributions. Precision, dynamic testing, and high-speed data acquisition are advantages of point FBG sensors. 

Scattering techniques do not use FBGs at all instead of relying on flaws in the fiber optic cable to obtain readings. There are three types of scattering technologies used in sensing systems today, each with its own set of capabilities. In general, distributed data and long sensing lengths benefit scattering-based fiber optic sensing systems. They are, however, limited to static operation due to low data fidelity, prolonged data acquisition rates on the order of minutes, and susceptibility to vibration. 

Sensuron employs a method that combines the advantages of point FBG sensors and scattering-based systems. Sensuron uses FBGs as the sensing element in their fiber but inscribes them continuously along its length. This process, including the signal interpretation technique, enables their platforms to collect spatially continuous data while maintaining the precision, dynamic testing, and high acquisition rates provided by FBGs. Engineers benefit from accurate measurements of full strain fields, temperature gradients, and other parameters in both static and dynamic environments. Sensuron's platforms can also measure internal and applied loads, deflection, 3D shape, and liquid level using the distributed strain data provided by the fiber.

For more information about Sensuron in New England and Upstate New York contact AP Corp. Call (508) 351-6200 or visit https://a-pcorp.com.